Addition

Key language: sum, total, parts and whole, plus, add, altogether, more than, is equal to, is the same as

Concrete	Pictorial	Abstract
Combining two parts to make a whole (Use other resources as well e.g. teddy bears, little pigs, pinecones)		$4+3=7$ (four is part, 3 is part and the whole is seven)
Counting on using number lines or 100 squares by using cubes, Numicon	A bar model which encourages the children to count on	The abstract number line: What is 2 more than 4? What is the sum of 4 and 2? What's the total of 4 and 2? $4+2$

Tens Ones + Tens Ones using number line or 100 square Children are encouraged to use their understanding of place value with the resources $22+15$	Children draw an empty number line $\begin{aligned} & 20+10=30 \\ & 2+5=7 \\ & 30+7=37 \end{aligned}$	$\begin{aligned} & 22+15= \\ & \\ & 20+10=30 \\ & 2+5=7 \\ & 30+7=37 \\ & \quad \frac{\text { or }}{10}=32 \\ & 22+10 \\ & 32+5=37 \end{aligned}$ Children are then encouraged to do this process mentally without writing down the steps
Tens Ones + Tens Ones using dienes Continue to develop understanding of partitioning and place value and use this to support addition $36+25$	This could be done one of two ways	$\begin{aligned} & 36+25= \\ & \\ & 30+20=50 \\ & 6+5=11 \\ & 50+11=61 \\ & \quad \frac{\text { or }}{} \\ & 36+20=56 \\ & 56+5=61 \end{aligned}$ Children are then encouraged to do this process mentally without writing

Mastery: different ways to ask children to solve e.g. $21+34$ down the steps

Subtraction

Key Language: take away, less than, the difference, subtract, minus, fewer, decrease, '7 take away 3', the difference is four,

Concrete	Pictorial	Abstract
Physically taking away and removing objects from a whole (using various objects) Rather than crossing out - children will physically remove the objects. E.g. $4-3=1$	Children to draw the concrete resources they are using and cross out. Use of the bar model...	$4-3=$ If I had four oranges and three rolled away, how many would I have left?
Counting back (Using number lines, number tracks or 100 squares) \square	Children to represent what they see pictorially e.g.	$6-2=4$ The abstract number line: What is 2 less than 6? What is two fewer than 6?

Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used) ? \square ?	Children to draw the cubes / other concrete objects which they have used	Find the difference between 8 and 6 $8-6$, the difference is...? Children to also explore why 9-7 = 8-6 (The difference of each digit, has changed by 1 so the difference is the same. This will help the children apply their knowledge to larger numbers, e.g. $90-70=80-60$)
Using tens frames The children physically move the counters	Children to present the ten frame pictorially	$14-5=9$ You may also want the children to see related facts e.g. $9+5=14$ Children to represent how they have solved it e.g.

TO - TO using dienes 48-13	Drawing the Dienes as lines and dots	Taking away the tens and ones: $\begin{aligned} & 48-13 \\ & 48-10=38 \\ & 38-3=35 \end{aligned}$ The aim is for children to end up doing this stage mentally.
TO - TO using dienes crossing the 10's barrier. 48-19	Drawing the Dienes as lines and dots. As you are unable to cross out 9 ones, you exchange a 10 diene for 10 ones.	Taking away the tens and ones: $\begin{aligned} & 48-19 \\ & 48-10=38 \\ & 38-9=29 \end{aligned}$

Mastery: different ways to ask children to solve e.g. 67-24:			
	Craig spent $£ 67$, Jonny spent $£ 24$. How much more did Craig spend? I had 67 metres to run. After 24 metres I stopped. How many metres do I have left to run?	$=67-24$ What is the inverse of $67-24=$?	$67-24$ can't equal an even number. Is this statement true or false? Prove your answer.

Multiplication

Key Language: double, times, multiplied by, the product of, groups of, lots of, 'is equal to', 'is the same as'

[^0]| $x 8=24$ | | | times a week. How many lengths does she swim in one week?
 Jamie saved 8 pounds three days a week. How much did he save in 1 week? | multiplication calculation?$8+8+8=$ | 8 metres. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | 8 | 8 | | | pool 3 times. |
| ? | | | | | Kasim works out how many metres he swims altogether. |
| Why is $3 \times 8=8 \times 3$? | | | | | Circle the two calculations that Kasim could use. |
| | | | $\begin{aligned} & 3+8 \\ & 3 \times 8 \end{aligned}$ | |
| | | | $\begin{aligned} & 8+8+8 \\ & 3+3+3 \end{aligned}$ | |

Division
Key Language: share, group, divide, divided by, half, 'is equal to', 'is the same as'

			$\square \div$

Glossary

Multilink

East Preston Infant School Calculation policy June 2018

Inverse: The opposite calculations. The opposite of addition is subtraction

Ten frame | \bigcirc | | | | \bigcirc |
| :--- | :--- | :--- | :--- | :--- |
| \bigcirc | | | | |

(vice versa). The opposite of multiplication is division (vice versa).

Part part whole

[^0]: Mastery: different ways to ask children to solve e.g. 3×8 :

 | With the counters - prove that 3 | Jas has to swim 8 lengths, 3 | Can you write this as a |
 | :--- | :--- | :--- |

