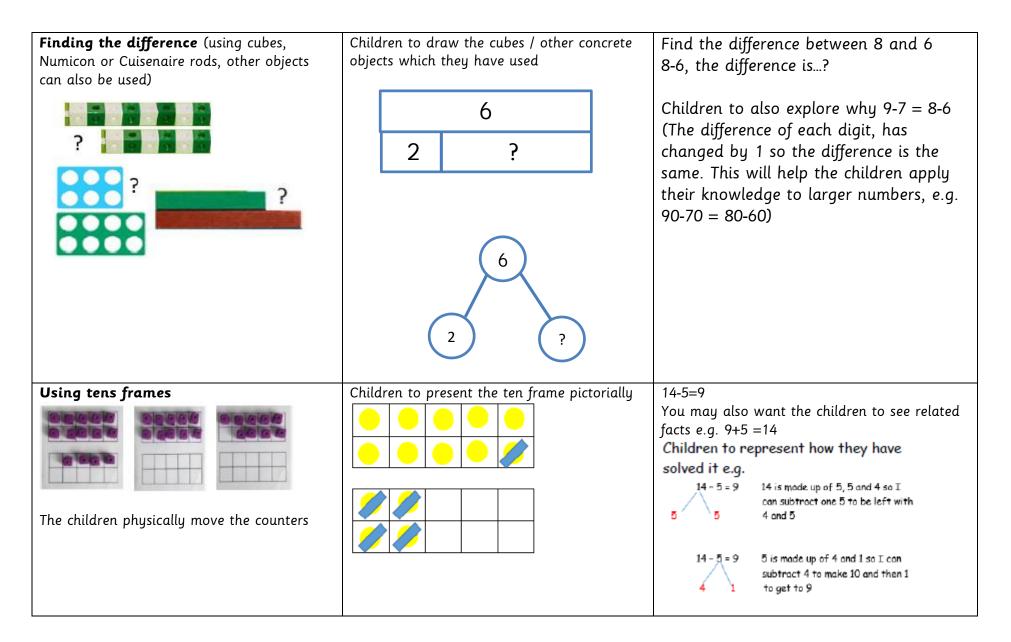

Addition

Key language: sum, total, parts and whole, plus, add, altogether, more than, is equal to, is the same as

Concrete	Pictorial	Abstract
Combining two parts to make a whole (Use other resources as well e.g. teddy bears, little pigs, pinecones)		4 + 3 = 7 (four is part, 3 is part and the whole is seven) 7 4 3
Counting on using number lines or 100 squares by using cubes, Numicon $\boxed{12345678910}$	A bar model which encourages the children to count on	The abstract number line: What is 2 more than 4? What is the sum of 4 and 2? What's the total of 4 and 2? 4 + 2 4 + 2

Concrete	Pictorial	Abstract
When adding 6 and 5, regrouping to make 10 by using ten frames and counters/cubes or using Numicon: Image: ten f	Children to draw the ten frame and counters/cubes	Children to develop an understanding of equality e.g. $6 + \Box = 11$ and $6 + 5 = 5 + \Box$ $6 + 5 = \Box + 4$
Adding Tens Ones + Ones using Dienes Continue to develop understanding of partitioning and place value 41 + 8	Children to represent the concrete using a particular symbol e.g. lines for tens and dot/crosses for ones	Different ways to partition and recombine 41 + 8 41 40 1 $1 + 8 = 940 + 9 = 49$



		do	wn the steps
Mastery: different ways to ask ch	ildren to solve e.g. 21 +	34	
	Sam saved £21 one week and £34 the next week. How much did he save in total? 21+34=55. Prove it! (reasoning but the children need to be fluent in representing this)	21 + 34 = □ = 21 + 34 What's the sum of twenty one and thirty four? What's the total of twenty one and thirty four?	Ben and Sita count cars. Ben counts 21 cars. Sita counts 34 cars. How many do they count altogether?

Subtraction

Key Language: take away, less than, the difference, subtract, minus, fewer, decrease, '7 take away 3', the difference is four,

Concrete	Pictorial	Abstract
Physically taking away and removing objects from a whole (using various objects) Rather than crossing out – children will physically remove the objects. E.g. $4 - 3 = 1$	Children to draw the concrete resources they are using and cross out. Use of the bar model	4 – 3 = If I had four oranges and three rolled away, how many would I have left?
Counting back (Using number lines, number tracks or 100 squares)	Children to represent what they see pictorially e.g.	6 – 2 = 4 The abstract number line: What is 2 less than 6? What is two fewer than 6?

TO – TO using dienes 48- 13	Drawing the Dienes as lines and dots	Taking away the tens and ones:
		48 – 13 48 – 10 = 38 38 – 3 = 35
		The aim is for children to end up doing this stage mentally.
TO – TO using dienes crossing the 10's barrier.	Drawing the Dienes as lines and dots. As you are unable to cross out 9 ones, you exchange	Taking away the tens and ones:
48-19	a 10 diene for 10 ones.	48 – 19
	X ++++ / / / / / / / / / / / / / / / / /	48 – 10 = 38
		38 – 9 = 29

Mastery: different ways	to ask children to solve	e.g. 67 - 24:	
67 24 ?	Craig spent £67, Jonny spent £24. How much more did Craig spend? I had 67 metres to run. After 24 metres I stopped. How many metres do I have left to run?	$\Box = 67 - 24$ What is the inverse of $67 - 24 = ?$	67 – 24 can't equal an even number. Is this statement true or false? Prove your answer.

Multiplication

Key Language: double, times, multiplied by, the product of, groups of, lots of, 'is equal to', 'is the same as'

Concrete	Pictorial	Abstract
Repeated grouping / repeated addition	Children to represent the practical resources In a	3 x 4
(does not have to be restricted to cubes)	picture e.g.	
3 x 4 or 3 lots of 4	XX XX XX	4 + 4 + 4
	XX XX XX	
	Use of a bar model for a more structured method	

Use number lines to show repeated groups e.g. 3 x 4	Represent this pictorially alongside a number line e.g. 0 4 8 12	Abstract number line 3 x 4 = 12
Use arrays to illustrate commutativity (counters and other objects can also be used) $2 \times 5 = 5 \times 2$	Children to draw arrays	Children to be able to use an array to write a range of calculations e.g. 2 x 5 = 10 5 x 2 = 10 2 + 2 + 2 + 2 + 2 = 10 5 + 5 = 10 + Rote learning of times tables in year 2

Mastery: different ways	to ask children to solve	e.g. 3 x 8:	
With the counters – prove that 3	Jas has to swim 8 lengths, 3	Can you write this as a	One length of a swimming pool is

x 8 = 24	times a week. How many lengths	multiplication calculation?	8 metres.
	does she swim in one week?		Kasim swims the length of the
8 8 8		8 + 8 + 8 =	pool 3 times.
	Jamie saved 8 pounds three days		
2	a week. How much did he save in		Kasim works out how many
	1 week?		metres he swims altogether.
Why is $3 \times 8 = 8 \times 3$?			
			Circle the two calculations that
			Kasim could use.
			3 + 8
			3 x 8
			8 + 8 + 8
			3+ 3 + 3

Division

Key Language: share, group, divide, divided by, half, 'is equal to', 'is the same as'

Concrete		Pictorial	Abstract
Plate method		Children to represent the practical resources In a	$4 \div 2 = 2$
2 shared between 2	10 shared between 2	picture e.g.	
		It can also be done with one plate split into sections:	
10			

Understand division as repeat grouping	ted	Children to draw grou in total:	ps of 2 until they have 6	Children 2, 4, 6	to count in 2s until they get to 6.
6 ÷ 2 =		6 ÷ 2 = 3			inted 3 2s so 6 ÷ 2 = 3
Mastery: different way 12 ÷ 2 = 2 Is this calculation correct? Can you prove what the correct answer is?	Pookie's Pe rabbits. They can c hutch.	children to solve et store has 12 bunny only keep two in a hutches will they	e e.g. 12 ÷ 2 Can you write a number that makes the same tot opposite side? 12 ÷ 2 =		Can you fill out the boxes with different calculations so that they make mathematical sense only using the numbers 12, 2 and 6? X = = $\div = =$ X = =

	□ ÷ =

Glossary

Bar modelling

Multilink

Dienes

12

Numicon

Inverse: The opposite calculations. The opposite of addition is subtraction (vice versa). The opposite of multiplication is division (vice versa).

Ten frame

Part part whole

